Northumbria River Basin District Mining pollution: catchment characterisation report

Project details

Project name:	River
Contact name:	Peter Aldred
Contact team:	GWCL-North East Area
Area Environment Manager:	Julie Brooker

Environment Agency

Water body summary information

Water body name:	Nent from Source to South Tyne
Water body id:	GB103023075420
Water body type:	Surface Water
Catchment:	South Tyne / River Tyne
RBP Measure	Minewater treatment and sediment management
RFF database	Zinc, Mitigation Measures, Fish
Related catchments	GB103023075531 S Tyne Black Bn to Tipalt
	GB103023075532 S Tyne Tipalt to Allen
	GB103023075710 S Tyne Allen to N Tyne

Water body classification (2009)

Bad	
Poor	Biology
Moderate	Specific Pollutants, Supporting Elements
Good	
High	Phisico Chemical
Heavily modified water body?	Yes

Comments Priority and Priority Hazardous substances do not require assessment

Summary of impacts from abandoned mines

NoCAM result	Impacted 16	
Length of river impacted	70 Km	
Groundwater body status	Poor Chemical status	

Mining Waste Directive

MWD i	MWD inventory										
URN	Site name	Mine type	Reason	Easting	Northing						
1005	Nenthead Mines	Metaliferous	Water Pollution	378420	543300						
1137	Hudgill Burn	Metaliferous	Water Pollution	375180	545660						

Review of data and conceptual model

Background.

The Nent valley is one of the most intensively mined waterbodies in the country with extensive spoil heaps throughout the valley and a number of significant discharges from adits. A number of studies have been carried out over the years to try and get a picture of the extent of the metal pollution from the abandoned mines.

- Feasibility of the amelioration of the metalliferous discharges in the Nent, East and West Allen catchments by Entec in 1997. Confirmed the very wide spread nature of the problem.
- Aquatic zinc pollution from abandoned mines. Assessment and passive treatment in the Nent valley. Charlotte Nuttall 1997 PhD.
- North Pennines metal mine monitoring report R Nent Atkins 2010 this conformed the importance of the pollution from 3 main mine adits in the Nent valley.

	Flow	Pb Diss	Pb Load % of mg/s Bywell		Cd Diss	Cd Load		Zn Diss	Zn l	_oad
Site Name	L/s	μg/L			μg/L	mg/s	% of Bywell	μg/L	mg/s	% of Bywell
Average										
S Tyne at Alston GS	2317	7.97	18.4665	28	0.17	0.39389	14	57.4	133	10
R Nent at Alston	440	16.6	7.304	11	3.14	1.3816	47	1483	652.52	47
S Tyne at Featherstone G.S	6333	4.57	28.9418	44	0.33	2.08989	72	132	835.96	60
E Allen u/s Allendale STW	870	6.64	5.7768	9	0.19	0.1653	6	76.8	66.816	5
W Allen at Hindley Wrae Fd	1078	4.48	4.82944	7	0.86	0.92708	32	323	348.19	25
S Tyne at Haydon Br	11688	3.14	36.7003	55	0.21	2.45448	84	79.9	933.87	67
R Tyne at Bywell	41656	1.59	66.233	100	0.07	2.91592	100	33.5	1395.5	100

• Tyne catchment characterisation study P Aldred 2012

The above table is a summary of the loadings of metals into the R Tyne catchment and confirms the importance of the contribution from the Nent waterbody of 47% of the total load of Zinc and Cadmium.

Following a review of these studies the EA and CA started to look at the possibility of treating the mine discharges in the waterbody and installed flow loggers in 2 adits, Rampgill and Caplecleugh. This study was started at the same time to confirm the loading of metals and inform the design of treatment schemes.

Background information, history of mining, results of preliminary investigative monitoring etc.

Geology

The Nent valley drains the Western side of the Alston Block mining area. This consists of a dome of 'Weardale' Granite overlain with thick limestone capped with sedimentary sandstones and mudstones. The limestone has fractured in multiple directions allowing hot mineral rich water to flow and leave ore deposits in many veins as it cooled. The ore body has a number of zones radiating out from the central source of mineralisation with zinc and lead more prominent towards the centre and Barium and Flourite further out. Nenthead is almost at the centre of the area and therefore has a particularly high zinc content, which is reflected in the high zinc concentration in the mine drainage. The limestone geology buffers acid produced when sulphide minerals oxidise, resulting in the minewaters discharging being close to neutral pH. The main river and tributaries are deeply incised into the rock exposing some of the veins and enabling historical mines to access the minerals.

Biology

Brief summary of any historical biology data - fish, inverts, diatoms??

Monitoring program

A monitoring program was set up to measure the metal load (flow and quality) with all points being sampled within one day to enable the same conditions to be assessed. Information from the Atkins 2010 report indicated that 3 point sources Caplecleugh Adit, Rampgill Adit and Haggs Adit, were significant and could lead to significant benefits to the river if treated so were targeted for sampling. Other discharges were of very low flow and could potentially be included in larger treatment schemes. The Nentforce level although a major source of metals was thought to be too difficult to monitor and with no space to treat and was left out of this survey, although further investigations are to be undertaken to look at the source of the flow and whether it could be prevented or diverted to alternative sites.

Conceptual Model

Flow

S Tyne at Alston Gauging station flow duration curve with sampling events marked

A reasonable wide range of flow events have been sampled but we are still awaiting samples from the lowest flow conditions. In very high flows gauging in the R Nent can be dangerous due to algae on the bed and the high speed of the flows, so no flows have been obtained with Q at Alston <19 which limits the interpretation of the data for these conditions.

Date	N1	N2	N3	N1+N2+N3	N4
11/12/2013	206	8.5	7.6	222.1	285
16/01/2014	308	19.8	7.2	335	474
19/02/2014	669	23.2	6.5	698.7	971
17/03/2014	109	9.5	3.5	122	121
15/04/2014	114	12.0	4.1	130.1	164
08/05/2014	345	13.0	3.0	361	602

Flow balances

Date	N4	N5	N4+N5	N6
11/12/2013	285	11	296	428
16/01/2014	474	10	484	696
19/02/2014	971	15	986	Hi Flow
17/03/2014	121	12	133	239
15/04/2014	164	4.0	168	284
08/05/2014	602	4.3	606.3	870

In both of the above situations it is known there are tributaries adding to the flow in the main river between monitoring points so I would expect the downstream point flows to exceed the calculated flows which they do apart from one occasion.

It is noted that the only point where calculated flows don't agree with measured flows is on the lowest flow conditions when we could expect less accurate data due to water flowing amongst gravels on the bed.

Between March 2014 and April 2014 the flow monitoring at Haggs mine N5 changed from a spot flow/area gauging to an in pipe flow logger. It is noted there appears to have been a step change in flow results here, it would be of benefit to check the calibration of the 2 methods to confirm the results.

Results

Should include all dets of significance

Table 1									
River Nent Average Data (µg/l) (min-max))								
Site Name	Flow L/s	рН	Hard	Tot Pb	Diss Pb (EQS 7.2)	Tot Cd	Diss Cd (EQS 0.08)	Tot Zn (EQS 8,50,75)	Diss Zn
Nent at Caplecleugh	292 109-669	7.14 6.7-7.6	23.1 13.7-40	26.9 18.6-44	19.3 10.5-35	0.72	0.67 0.57-0.74	270 246-295	266 239-297
Caplecleugh at Nent	14.5 9.5-23	8.04 7.7-8.2	274 172-325	39.8 29-69	28.9 25-37	12.7 9.6-15	12.6 9.5-14.8	7427 5730-8690	7473 5710-8920
Rampgill Adit	5.3 2.9-7.5	8.28 8.1-8.4	259 196-310	398 13-1790	8.39 4.4-13.2	5.07 3.2-11.5	3.19 2.9-3.4	2938 1790-6870	1825 1580-1980
Nent just US Nenthead STW outfall	436 121-971	7.94 7.6-8.2	53.3 28-90	37.1 23-51	21.1 13-37	1.94 1.5-2.8	1.77 1.4-2.3	888 617-1280	845 607-1150
Haggs at Nent	9.4 3.9-15	7.83 6.3-8.2	527 493-553	4.54 2.5-10	0.6 <2-3.5	11.6 10.3-13.7	11.4 10.2-13	11900 10700- 13700	11700 10800- 13300
Nent at Nenthall	503 239-<	8.35 8.1-8.5	94.3 37-186	36.7 18.6-78	19.2 8.9-36	2.86 1.5-4.8	2.7 1.5-4.6	1322 709-2140	1301 672-2170
R Nent at Alston	652 223-<	8.31 8.1-8.6	89.3 42-158	46.6 21-91	21 11.2-33	2.97 1.5-4.8	2.66 1.5-3.7	1156 701-1820	1083 672-1450

The upstream point chosen for this investigation has a significant failure for Cadmium, Lead and Zinc, however this is expected due to this point being downstream of the mine site but upstream of the point source discharges so gives a useful indication of the diffuse pollution. Comparing the current results with Atkins 2010 data the Caplecleugh and Rampgill adits are similar concentrations but the Haggs mine has almost doubled its concentration of Cadmium and Zinc over this period. It is unclear what may have caused this although it is known that mine explorers have removed roof collapse blockages within the mine and this may have altered underground water flows.

Water quality – adits

Name	Flow	рН	μg/l (dissolved)						SO ₄
	(I/s)	-	Pb	Cd	Zn	Cu	Fe	Mn	(mg/l)
	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	(Min –	(Min –	(Min –	(Min –	(Min –	(Min –	(Min –	(Min –	(Min –
	Max)	Max)	Max)	Max)	Max)	Max)	Max)	Max)	Max)
Caplecleugh	14.5	8.02	22.4	12.9	7825	1.13	20.2	188	175
MW	9.5-23	7.4-8.2	12-36	9.5-15	5710-9890	<1-2.4	<30-79	126-208	99-209
	5.3	8.13	5.09	3.19	1917	0.16	28	127	124
Rampgill MW	2.9-7.5	7.8-8.3	<2-13.2	2.8-3.5	1690-2240	<1-1.4	<30-108	96-159	84-141
	9.4	7.89	0.4	11.8	12844	1.57	<30	398	432
Haggs MW	3.9-15	7.6-8.1	<2-3.6	10.2-	10800-	<1-3.47		344-605	401-462
				13.6	16600				
Croft MW		7.69	<2	3.72	1607	0.85	27	66	90
(2010)		7.6-7.7		3.6-3.9	1510-1700	<1-1.5	<30-37	64-67	89-91
Nent Force		7.57	<2	2.46	1526	0.24	<30	15	130
Level (2010)		7.5-7.58		2.4-2.52	1450-1580	<1-1.2		14-16	125-134

Metal loading

Preferred units for all loads should be ug/s

	Flow	Pb Diss	Pb Load		Cd Diss	Cd Load		Zn Diss	Zn Diss Zn Lo	
Site Name	L/s	μg/L	ug/s	% of Alston	μg/L	ug/s	% of Alston	μg/L	ug/s	% of Alston
			11	/12/2013	Q 54				1	
Nent at Caplecleugh	206	10.5	2163	14	0.584	120	5	239	49234	4
Caplecleugh at Nent	8.5	27.7	237	1.5	9.98	85	3	5850	49977	4
Rampgill Adit	7.5	6.26	47	0.3	3.42	26	1	1980	14947	1
Nent just US Nenthead STW	285	12.9	3677	24	1.61	459	18	777	221445	20
Haggs at Nent	11	0	0	0	13	143	6	13300	146300	13
Nent at Nenthall	428	18.5	7918	53	2.65	1134	44	1350	577800	52
R Nent at Alston	825	18.2	15015	100	3.09	2549	100	1350	1113750	100
			16	/01/2014	Q 19					
Nent at Caplecleugh	308	17.3	5328	28	0.703	217	7	274	84392	8
Caplecleugh at Nent	20	26.8	532	3	14.8	294	10	8920	176982	16
Rampgill Adit	7	8.08	58	0.3	3.34	24	1	1830	13171	1
Nent just US Nenthead	474	10.2	0101	18	1 74	825	28	836	306264	36
Haggs at Nent	10	3.57	3101	0.2	10.6	106	20	10000	100000	10
Nent at Nenthall	696	17.5	12180	64	1 87	1302	4	929	646584	50
R Nent at Alston	1220	15.7	10154	100	24	2928	100	904	1102880	100
		10.1	10104	2/02/2014	09	2320	100	004	1102000	100
Nent at Caplecleugh	669	25.1	16792	#######	0.765	512	#######	297	198693	#######
Caplecleugh at Nent	23	37	859	#######	9.51	221	#######	5710	132546	#######
Rampaill Adit	6.4	13.2	85	#######	3.32	21	#######	1690	10924	#######
Nent just US Nenthead	074									
STW	971	28.6	27771	######	1.47	1427	######	629	610759	######
Haggs at Nent	15	0	0	######	10.2	153	######	10800	162000	######
Nent at Nenthall	HI Flow	22	##### #	#######	1.45	######	#######	672	#VALUE !	######
R Nent at Alston	Hi Flow	18.9	##### #	#######	1.53	#####	#######	672	#VALUE !	#######

	17/03/2014 Q 73									
Nent at Caplecleugh	109	14.4	1570	25	0.571	62	7	246	26814	8
Caplecleugh at Nent	9.5	25	237	4	14.5	137	16	8270	78358	24
Rampgill Adit	3.5	4.36	15	0.2	2.99	10	1	1910	6683	2
Nent just US Nenthead										
STW	121	14.4	1742	28	2.29	277	33	1150	139150	43
Haggs at Nent	12	0	0	0	11.2	134	16	11300	135600	42
Nent at Nenthall	239	8.9	2127	34	4.57	1092	131	2170	518630	160
R Nent at Alston	223	28.3	6311	100	3.74	834	100	1450	323350	100
	1	1	15	/04/2014	Q 73	1		0	1	
Nent at Caplecleugh	114	13.2	1505	40	0.669	76	7	269	30666	7
Caplecleugh at Nent	12	30.7	368	10	13.2	158	14	8320	99682	22
Rampgill Adit	4.1	7.14	29	1	3.09	13	1	1960	8063	2
Nent just US Nenthead										
SIW	164	15.1	2476	65	2.1	344	31	1070	175480	39
Haggs at Nent	4	0	0	0	10.8	43	4	11500	45897	10
Nent at Nenthall	284	12.1	3436	90	4	1136	103	1970	559480	125
R Nent at Alston 340 11.2 3808 100 3.							100	1320	448800	100
		1	08	/05/2014	Q 16			1		
Nent at Caplecleugh	345	35	12075	######	0.736	253	######	268	92460	######
Caplecleugh at Nent	14	26.4	369	######	13.6	190	######	7770	108640	######
Rampgill Adit	3	11.3	34	######	2.95	9	######	1580	4705	######
Nent just US Nenthead	602	36.5	21973	#######	1 42	855	#######	607	365414	########
Haggs at Nent	4.2	0	0	#######	12.6	54	#######	12400	52725	#######
Nent at Nenthall	870	36.1	31407	#######	1.67	1453	#######	717	623790	#######
	Hi		######						#\/ALLIE	
R Nent at Alston	Flow	33.4	#	#######	1.94	######	#######	799	!	#######
	-		Atkins re	eport 2010 n	nean value	es				
Nent at Caplecleugh		19.5			2.49			995		
Caplecleugh at Nent	13.8	23.08		0.7	11.87		11	6950		17
Rampgill Adit	13.1	4.81		0.4	3.39		3	1889		4
Nent just US Nenthead	075							4		
STVV	2/5	17.57		17	3.31		23	1573		27
Haggs at Nent	12.7	<2		0.2	4.22		3	5911		11
Nent at Nenthall		15.85			3.13			1536		
R Nent at Alston	1	14.62			2.83			1266		

Bioavailable Zinc

All sites exceed the Zinc, Cadmium and Lead EQS by a large margin including the chosen upstream point

Potential water quality improvements from treating point sources (use MINDAR s/s)

Currently due to the data available it is difficult to evaluate the impacts of the mines. Caplecleugh and Haggs adits appear to be the major point sources into the river Nent. It is difficult to flow gauge the lower reaches of the Nent in high flows for Health and safety reasons so we cannot calculate the contributions to the river in these conditions. However this should not be too much of a problem as point sources are usually a larger contribution in low flows when we could expect greater benefits from a treatment scheme but we are likely to need to monitor for a longer period to get enough useful data. The flow from the Haggs mine needs to be confirmed as this looks like the major contributor to the pollution load. Also if there has been a significant change in concentration is this going to stay high or could it reduce over time, longer term monitoring is required to confirm this.

Constraints

Land owners and occupiers

If known, please state land owners and occupiers. Do not include contact details that may be covered by the Data Protection Act.

Conservation and heritage designations

Nenthead mine site is a Scheduled ancient monument Smallcleugh mine, (Nenthead mine site) is a SSSI predominantly for mineral interest and Haggs mine is a SSSI.

Stakeholders

Natural England, English Heritage, North Pennines AONB, Nenthead mines Conservation society, Cumbria County Council (landowner of Nenthead site)

Peter Aldred July 2014